
Data structures for buffering

Roland Sipos for DUNE DAQ

DUNE DAQ/SC Meeting
7th June 2021

2

● Buffering
○ Requirements and constraints
○ Latency Buffer

● Data structures
○ Classification
○ Few examples

● Use-cases in the “readout” package
○ WIB LB: lock-free ProducerConsumerQueue from Folly
○ PDS LB: ConcurrentSkipList from Folly

● Other potential use-cases
● Outlook

Overview

3

Buffering

4

● A data buffer is a region of memory storage
used to temporarily store data while it is being
moved from a source to a destination.

● Buffers are typically used when there is a
difference between the rate at which data is received
and the rate at which it can be processed, or when
these rates are variable.

● A buffer often adjust “timing” by implementing a
queue algorithm in memory, simultaneously writing
data into the queue at one rate and reading it at another rate.
○ E.g.: Burst write at given rate, then process & flush

at a different rate.

Buffering

3+ data
types

5

● Latency Buffer (LB): A data structure implementation that temporarily stores the
raw data, and has certain attributes that ensures search-ability based on a lookup
criteria. A notable example for this, is the lookup based on a key, e.g.: timestamp

● Accessor entities:
○ Data Receiver (entity)

■ Producer: moves data to LB (thread)
■ Responsible for monitoring
■ Initiates cleanup of old data

○ Request Handler (entity)
■ Potentially overlapping data requests (threads)
■ Removes/cleans up old data (thread)
■ Other special requests (threads)

Latency Buffer & its access

6

Far Detector Front-end (FE) types and their characteristics:
● WIB/WIB2: Fixed arrival rate of fix sized byte arrays (payloads)
● PDs: Variable arrival rate of fix sized byte arrays (payloads)
● TPs: Variable arrival rate of variable sized byte arrays (payloads)

Other constraints:
● Arriving payloads are pre-sorted on timestamp field

Provide a solution for:
● Far Detector FE use cases, other use cases:
● Other use cases (e.g.: ND):

Variable arrival rate of variable sized payloads, but packets are not pre-sorted!

Readout requirements for buffering

7

… to buffer:
● TPC data that are continuous in time and memory space
● PDS data that are non-continuous in time, but it is in memory space
● TPs that are continuous in time, but not in memory space
● ND data that are non-continuous in time, neither in memory space, non

time-ordered arrival

True for all:
○ Homogeneous (won’t mix with other FE types)
○ Highly concurrent access (especially true for high-rate FEs -> TPC)

We are looking for data structures...

8

Data structures

From: https://medium.com/

https://medium.com/

9

● In computer science, a data structure is a data organization, management, and
storage format that enabled efficient access and modification.
○ More precisely: a data structure is a collection of data values, the

relationships among them, and the functions or operations that can be
applied to the data.

● Why we need them?
○ Index- and searchability: If the processing needs to find elements efficiently
○ Concurrency: Multiple operations may happen in parallel

● Advantages:
○ Efficiency: Choose right data structures for the right use-cases
○ Reusability: Mature implementations exists in several different libraries
○ Abstraction: Specified by ADT, but clients use fixed interfaces

Data structures

10

Linear: All of the elements are
arranged in linear order. Elements
are stored in non-hierarchical way
where each element has a
successor and predecessor.
(Except first and last.)

Non-linear: Does not form a sequence.
Each element is connected with two
or more other items in a non-linear
arrangement.
(Elements are not arranged in sequential structure.)

Data structure classification

From: https://bcastudyguide.wordpress.com/unit-1-introduction-to-data-structure-and-its-characteristics/

https://bcastudyguide.wordpress.com/unit-1-introduction-to-data-structure-and-its-characteristics/

11

Array: Collection of homogeneous elements
that are contiguously arranged
(mutable but static: the size cannot be changed)

List: Collection of homogeneous/heterogeneous
elements stored at non-contiguous locations.
Each node of the list points to its adjacent
node.

Queue: Linear list in which elements can
be inserted only at the “end” and deleted
only at the “front”. (FIFO)

Stack: Similar to queue, but only “open” at one end
(top of the stack). (LIFO)

Data structure examples

The talk focuses on these.

12

The term non-blocking denotes concurrent data structures, which do not use traditional
synchronization primitives like guards to ensure thread-safety.

The 3 main types of non-blocking data structures:
● Wait-free, if every concurrent operation is guaranteed to be finished in a finite

number of steps
● Lock-free, if some concurrent operations are guaranteed to be finished in a finite

number of steps
● Obstruction-free, if a concurrent operation is guaranteed to be finished in a finite

number of steps, unless another concurrent operation interferes

Some data structures can only be implemented in a lock-free manner, if they are used
under certain restrictions.

Concurrent access

From Boost.Lockfree: https://www.boost.org/doc/libs/master/doc/html/lockfree.html

https://www.boost.org/doc/libs/master/doc/html/lockfree.html

13

● Custom/homebrew
● Boost

○ Lockfree: ::queue, ::stack, ::spsc_queue
● TBB & oneAPI

○ Concurrent: ::hash_map, ::lru_cache, ::map, ::queue, ::vector, etc…
○ Internal _concurrent_skip_list

● Folly
○ Queues: SPSC, MPMC (with optional blocking)
○ LockFreeRingBuffer
○ ConcurrentSkipList

(Details on the unified C++ memory model can be found under the cppreference.)

Implementations

(The appfwk uses these for inter module communication.)

https://en.cppreference.com/w/cpp/language/memory_model

14

Data to buffer:
● TPC data: continuous in time and

memory space. (high rate)

● PDS data: non-continuous in time, but it
is in memory space. (moderate rate)

● TPs: continuous in time, but not in
memory space. (low rate)

● ND data: non-continuous in time,
neither in memory space, non
time-ordered arrival. (low rate)

Considerations for LBs
Data structure implementations:
● Custom/homebrew

● Boost.Lockfree

● Folly:
Queues: SPSC, MPMC
LockFreeRingBuffer
ConcurrentSkipList

● TBB & oneAPI: Concurrent DSs
Internal _concurrent_skip_list

15

Data structures for LBs

16

FE payloads can be contiguously arranged.

● Fix size: can be stored continuously
○ Fix rate: key can translate to position
○ Var rate: needs “find”/”search”
○ FE payloads are sortable

● Var size: elements are stored non-continuously
○ Fix rate: needs “insert”
○ Var rate: needs “insert” and “find”/”search”
○ FE types can implement own

sortable wrappers with overloaded operator

Payload structures

17

TPC data buffering with SPSC queue

● Used in production at ProtoDUNE-SP
● Trigger timestamp can be translated

to element position/index in the queue
● Modifications for DUNE in readout:

○ AccessableSPSC (readPtr function)
○ At certain occupancy threshold,

a “data-cleanup” is requested
○ RequestHandler executes requests:

■ ClassA - data request
■ ClassB - cleanup request

○ A safe margin in form of extra payloads is
needed to buffer an extra few seconds

https://github.com/DUNE-DAQ/readout

18

PDS data buffering

● Problem: time-gaps in contiguously arranged elements:

● Since v2.6 there are two implementations for the PDS LB and their
corresponding request handling solutions:
○ SPSC based, with LB extension to ensure searchability in the buffer
○ SkipList based, with “find”/”search” functionality

19

PDS data buffering with SPSC queue

● Introduce “Key” and “KeyGetter” template
Parameters to the SPSC as an extension:
SearchableProducerConsumerQueue

● Implement a binary search algorithm in the
function of the new queue with signature:

● FE types need to implement corresponding
KeyGetter function objects.

● RequestHandler uses Trigger TS as key for the find_element function.

Courtesy of Florian Till Groetschla

T* find_element(Key& key) { … }

https://github.com/floriangroetschla

20

SkipList
The SkipList is a probabilistic, ordered data structure providing O(log(n))
lookup, insertion and deletion complexity at average.

It has the best features of a sorted array (for searching), while maintaining a linked-list
structure that allows insertion (that the array does not have).

Fast search is achieved by maintaining a linked hierarchy of subsequences, with each
successive subsequence skipping over fewer elements than the previous one.

The subsequences support binary searching
by starting at the highest subsequence and
working towards the bottom, using the links
to check when one should move forward in
the list or down to a lower subsequence.

From Wikipedia: https://en.wikipedia.org/wiki/Skip_list

https://en.wikipedia.org/wiki/Skip_list

21

SkipList & BTree

● It provides it without the need for tree balancing, page splitting, etc., that are
required for BTrees.

● ~ 20 years younger invention than the BTree. (1990 vs 1970s)

● BTrees made a lot of sense for databases when the data lived most of its life
on disk and was moved to memory and cached for running queries on them
○ BTrees do lot of extra work to reduce disk I/O, which is needless

overhead if our data fits in memory. (Which is true for the LBs.)

https://link.springer.com/chapter/10.1007%2F3-540-51542-9_36
https://infolab.usc.edu/csci585/Spring2010/den_ar/indexing.pdf

22

ConcurrentSkipList from Folly
The folly::ConcurrentSkipList implements A Provably Correct Scalable Concurrent Skip List.

● Good high contention performance

● Small memory overhead. (~40% less, compared with std::set)

● Read accesses are lock-free and mostly wait-free. Write access require locks,

but these are local to the predecessor and/or successor nodes.

● Lazy remove with GC support. Removed nodes are deleted when the last

“accessor” is destroyed.

● Can be 10x slower than std::set when the list is small (<1000 elements)

● Write operations are ~30% slower in single-threaded env compared to std::set

https://github.com/facebook/folly/blob/master/folly/ConcurrentSkipList.h
https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.pdf

23

CSKL high contention test

● Variable rate (10-100 kHz) producer of
5568 Bytes payloads with timestamp
increments (we always “push back”).

● Searcher thread looks for an element with
given timestamp at 10 Hz.

● Cleaner thread periodically (every second)
looks at tail and head timestamps. If the
timestamp distance exceeds a duration,
elements that are outside a time duration,
are removed.

24

PDS data buffering with CSKL

● Introduce “less” operator for the FE payload structures.

● Add SkipListLatencyBufferModel with:
○ “Insert” that moves new elements into the list.
○ “Read” that returns lower_bound element (i.e.: closest timestamp)

● Implement PDSRequestHandler that need special access to the SkipList.
○ Override data request function with using Accessors to iterate and

collect elements that are included in the trigger window.
○ Override cleanup request function that removes elements that are out of

bound from a time-duration (e.g.: last 2 seconds based on newest
timestamp)

25

Other potential use-cases

● Near Detector FE types
○ Variable rate and variable size -> linked list fits well
○ No guarantee of time-ordered payload arrival -> needs sorting on insertion

● Event Building
○ Sorting on insert operations
○ Composite keys make the SkipList a powerhouse

26

Outlook

● Investigate RingBuffer (potentially eliminates the need for “cleanup”)

● Investigate “smart” data structures. I.e.: add functionality on top of original
implementations (Like the SearchableSPSC.)

● Performance evaluation of different implementations used for different use-cases

27

End
Thank you for your attention!

